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AXTKXXA ÜPTIMIZATIOX CRITERIA 

David K. Cheng 

ABSTRACT 

This  Is Che final  report  for Contract No.   F30602-68-C-006 7  (ARPA 

Order No.  1010) monitored by the Rome Air Development Center     The effec- 

tive period of this Contract was from 22 September 1969 to 22 March 1971. 

lour technical  reports have been Issued on the results obtained 

under this Contract.    They are: 

(1) Tech.  Rpt. No.   1;    "Spacing Perturbation Techniques  for Array 
Optimization," RADC-TR-68-19,  November 1967. 

(2) Tech.  Rpt.  No.  2;     "Array Optimization Criteria," RADC-TR-68-579, 
November 1968. 

(3) Tech.  Rpt.  No.   3;    "Beam Synthesis Techniques  for Large Circular 
Arrays with Many Directive Elements," RADC-TR-69-U1, October 1969. 

(A)    Tech.   Rpt. No.  4;    "Sidelobe-Reduction and Interference-Suppression 
Techniques for Phased Arrays Using Digital Phase Shifters," 
RADC-TR-70-51,  February 19 70. 

The present  report is divided into two parts.     Part   (A)  summaries the 

essential optimization techniques  for antenna arrays,   Including a method 

which makes only phase adjustments.    Part   (B)  presents a new  integral- 

equation approach for optimizing arrays with mutual coupling.    This 

approach  is  particularly advantageous when an array  contains  many  long 

dipoic elements. 

iii 



TABLE OF CONTENTS 

PAGE 

PART   (A). OPTIMIZATION TECHNIQUES FOR ANTENNA ARRAYS. 

I. Inc reduction—-— ——_—»—_»_—__-._—_—__—____— i 

II. General Formulation———————-—.———————— .— 7 

III. Optimization by Excitation Adjustments  10 

IV. Optimization by Spacing Adjustments—-———————  14 

V. Optimization by Phase Adjustments  20 

VI. Optimization with Constraints  23 

VII. Consideration of Mutual Coupling  27 

VIII, Other Considerations  33 

IX. Appendix to Part  (A) ■  37 

PART   (B). INTEGRAL-EQUATION APPROACH FOR OPTIMIZING ARRAYS WITH MUTUAL 

COUPLING. 

I. Introduction  38 

11. Integral-Equation Formulation — —— — 40 

III. The Three-Term Theory  42 

IV. Matrix Equations  48 

V. Half-Wave Dipoles  50 

VI. Maximization of Directivity  54 

VII. Numerical Example  57 

VIII. Conclusion  59 

IX. Appendix to Part (1)  64 

REFERENCES  71 

iv 



PART (A). OPTIMIZATION TECHNIQUES FOR ANTENNA ARRAYS 

I.  INTRODUCTION 

An antenna is an essential part of any electronic system which transmits 

or receives electromagnetic energy In a wireless fashion. Without an antenna, 

electromagnetic energy will be localized, and Interaction at a distance be- 

tween unconnected points in space does not occur. An antenna can be considered 

as a transducer which converts electromagnetic waves In space to current or 

voltage variations in a circuit, or vice versa.  It must be an efficient radi- 

ator (or collector) of electromagnetic energy, and it should direct the energy 

to certain desired directions and suppress it in other specified directions. 

Thus, one must be concerned not only with the conversion efficiency of an an- 

tenna, but also with its spatial response, or radiation pattern.  In an en- 

vironment which does not involve nonlinear media, a reciprocity relation holds 

such that the properties (pattern, gain, impedance) of an antenna used for re- 

ceiving are identical with those when it is transmitting. For simplicity we 

shall then refer all discussions to radiation properties. 

A radiating element of electromagnetic energy may take many different 

forms. It may be a piece of conducting wire, a dielectric rod, a metallic 

horn, or a slot on tS« side of a waveguide. The radiation pattern of a 

single element is fixed for a given frequency of excitation and contains, in 

general, a main beam and a number of smaller sidelobes.  In practical appli- 

cations there is quite often a need for either improving the directive properties 

or controlling the sidelobe structure of the radiation pattern  Two methods are 

available for this purpose: one method is to use an appropriately shaped re- 

flector or lens fed by a radiating element, and the other is to employ a 
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number of radiating elements properly arranged In space to form an antenna 

array. When it is necessary to steer (scan) the main beam of the radiation 

pattern, the requisite motion of heavy r«flector-or lens-type antennas en- 

tails both mechanical and structural problems. Moreover, the possible rate 

of scan is severely limited. On the other hand, beam-steering for an antenna 

array can be accomplished electronically by adjusting the relative phase of 

excitation in the array elements with no need for mechanical motion, result- 

ing in a phased array. We shall concern ourselves only with phased array 

antennas in this report. 

The radiation pattern of an Array antenna obviously depends on both the 

array geometry and the pattern of the individual array elements  Aside from 

such circuit properties as impedance and efficiency, the parameters which 

characterize antenna performance are all based on the shape of the radiation 

pattern. Performance optimization then is a procedure for the maximization or 

minimization of certain measures on the radiation pattern. One well-known re- 

sult in this regard is the Chebyshev array which makes use of the properties 

of Chebyshev-Akhiezer polynomials [1], [2]. A Chebyshev array is optimum in 

Che sense that for a specified side lobe level the width of the main beam of 

its radiation pattern is a minimum. Conversely, for a specified beanwidth 

all the sidelobes of a Chebyshev array are of equal height and are at a  lowest 

level  The original Chebyshev design considered by Dolph (1] was limited to 

linear broadside arrays of Isotropie elements uniformly spaced at a distance 

equal Co or larger than a half-wavelength.  It has since been extended in 

various ways (see, for instance, [3]).  Recently methods for determining the 
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current distribution, the minimum required number of controlled elements, 

and other properties of optimum rectangular arrays with a steerable main 

beam and constant sldelobes have been formulated   [4,17]. 

Besides the beanwidth-sidelobe relationship, an Important performance 

Index for any antenna is its directive gain, or directivity      Directivity is 

defined as the ratio of the radiation Intensity  (radiated power per unit 

solid angle)  In the direction of the main beam to the average  radiation 

intensity.    To put it another way,  the directivity of an antenna or an array 

Is the ratio of its maximum radiation intensity to the radiation intensity 

of an Isotropie (omnidirectional) source    radiating the same total power. 

It measures the ability of concentrating the radiated energy in the main- 

beam direction.    Our attention in this report will be directed toward the 

various techniques for maximizing the directivity of antenna arrays 

The performance of an antenna system as  a receiving device is often 

constrained by the presence of a spatially distributed background noise as 

well as by the noise generated in the receiving system.    A useful perfor- 

mance index of a receiving array is the signal-to-noise power ratio  (SNR) 

at  the system output.    The problem of finding the complex weighting  fac- 

tors of the individual array elements such that the SNR is maximized  for a 

signal coming from a given direction and a noise of a given power spectral 

density and a given spatial distribution is  of considerable importance.     It 

It should be noted that an Isotropie source  radiating uniformly in all 
directions  is physically unrealizable  for  vector  fields. 
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can be shown [5,6] that techniques similar to those for the maximization of 

directivity are applicable for SNR maximization. The formulation becomes 

more Involved when the element space-frequency response, the signal power 

spectral density, the internal noise power spectral density, the spatial noise 

cross-power spectral density, and the receiver or filter frequency response are 

to be considered [7], We shall not attempt to discuss the more general case in 

this report. 

The problem of maximizing the directivity of a linear array with equally 

spaced Isotropie elements was first studied by Uzkov in 1946 [8], He demon- 

strated that the maximum obtainable directivity for an array with N elements 

2 
spaced at a half-wavelength (A/2) apart is N and that it tends to N as the 

spacings approach zero.  Bloch, Medhurst and Pool [9] examined the maximum 

directivity of a linear array of half-wave dipoles from the point of view of 

self and mutual resistances of the elements.  Gain optimization under a speci- 

fied constraint was investigated by Uzsoky and Solymar [10], and Lo, Lee and 

Lee [5].  In 1964 Tai [11] published many interesting curves showing the opti- 

mum directivity of various types of uniformly spaced broadside arrays, linear 

arrays with maximum radiation in the direction of the array normal. The 

optimization problem was generalized by Cheng and Tseng [12], [13] to Include 

arrays of non-isotropic elements arranged in an arbitrary configuration with 

a main beam pointing at an arbitrary direction.  By making use of a theorem on 

the properties of a ratio of two Hermitian forms in matrix algebra, the optimi- 

zation procedure was formalized in a concise manner.  It turned out that 

Krupltskii in U.S.S.R. [14] had used the same theorem to prove the existence 
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and uniqueness of a solution for exciting an array of discrete radiators  for 

maximum directivity. 

In the following we shall first express,  In Section II,  the directivity 

and slgnal-to-nolse power ratio of an array of discrete elements as a ratio 

of two Hermltlan forms.    The optimization principle for a ratio of Hermltlan 

forms Is then reviewed and applied to antenna arrays  In Section III.    With  a 

given array configuration where the element positions are not to be changed, 

the excitation amplitudes and phases In the array elements  can be adjusted 

for the optimization of a performance Index.     If the array has a total of N 

elements,  the optimization procedure Involves  the determination of 2N parame- 

ters.    Typical results for linear and circular arrays will be presented.     For 

linear arrays the spaclngs between the array elements represent another con- 

venient set of parameters that can be adjusted to Improve the performance 

Index further.    A spacing-perturbation technique which  can be used in con- 

junction with the adjustments  in excitation amplitudes  and phases Is dis- 

cussed in Section IV.    This process of excitation and spacing adjustments 

may be repeated until the improvement obtained by further adjustments is no 

longer significant. 

In practice it is perhaps  inconvenient to adjust the element spaclngs. 

Even adjustments in excitation amplitudes are difficult  and expensive to 

make.    Techniques for maximizing the directivity of a fixed array by keeping 

the amplitudes equal and adjusting the phases only are  therefore of Interest. 

These techniques are explored in Section V. 
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The adjustment of the excitation amplitudes, phases, or spaclngs of 

an array in order to achieve a maximum directivity changes the array radi- 

ation pattern. In practice it Is often desirable to control some aspects 

of the array pattern. For example, one may wish to have a maximum direc- 

tivity in one direction while requiring a null in certain other directions 

in order to minimize interference. The method of optimization under con- 

straints is discussed in Section VI. 

Initially, as we develop the optimization procedure, we shall assume 

that all the elements in an array are identically polarized and have the 

same radiation pattern (element pattern). Once the element pattern Is 

specified, the physical structure of the array elements Is no longer 

important in our problem, and it Is immaterial whether the elements are 

dipoles, horns, slots, or other apertures. This assumption neglects the 

implications of mutual coupling. For large arrays with many elements this 

assumption gives acceptable results, although the element pattern must first 

be found. However, for arrays with a small number of closely spaced elements 

or in cases where more accurate results are desired, mutual-coupling effects 

must be taken into account. Section VII reviews the moment method for opti- 

mizing the directivity of arrays of wire antennas without neglecting mutual 

coupling. The moment method provides numerical solutions by first converting 

the governing integro-dlfferential equations Into matrix equations. 

Finally, in Section VIII, we discuss various other factors which are 

relevant in the optimization of discrete antenna arrays. 
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II.     GENERAL FORMULATION 

Consider an array of N discrete, similarly oriented, Identical elements 

arranged arbitrarily In a 3-dlmenslonal space, as shown In Fig.  1.    Denoting 

the excitation In the nth element located at  (r  .6.0  by I    exp(;U ), we may 

write the array factor for electric field Intensity as 

N 
E(e,^)  ■    I    ln explj((l;n + krn cos an) ] (1) 

n«l 

where 
cos a,    ■ sin 6 sin 6    cos(4<-*  ) + cos  (i  cos 6 (2) n n n n 

k ■ 2IT/X IS the wavenumber, and A Is the operating wavelength.    Let gCG,*) 

denote the element power-pattern function which Is normalized such that 

g(e0.*0) - i (3) 

In the direction (6 ,4) ) of the main beam. The directivity of the array 

Is then 

Radiation Intensity In direction (6  ,4. ) 
n a 00 

Average radiation Intensity 

lE<V»0>l2  
2lT n 

(A) 

■^ j      d(()  I     |E(e,*)|2 g(e,*) sin Od'i 

0        6 

We now define two N-element column vectors J  and F  , witli J  repre- 

sentlng the set of complex element excitation functions: 
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i' ^ 

11 expCj^) 

12 exp(Ji|/2) 

1N   eXP<J*N) N N' 

(5) 

and F    representing Che set of phase factors due to differences In distance: 

F    -  [F    ]  - o on (6) 

expC-jk^  cos a01) 

exp(-jkr2 cos a02) 

« 

exp(-JkrN cos a0N) 

where cos a.    (n-1,2 N) is obtained from (2) by setting 9 > 6 and 

$ - $ . From (1), (4), (5) and (6) It is readily verified that the direc- 

tivity can be written as 

J A J 
D - (7) 

J B J 

where t on a matrix indicates the adjoint, or the conjugate transpose, of 

the matrix. A and B are N by U  square matrices defined as 

A - [a ] - F F ~    mn    ~o ~( mn   ~o ~o 

and 

with 

B = [b  ] 
mn 

b  = T- I  d* I g(0,4)) exp[-1k(r cos a -r cos a )] sin Qd9 
mn  4^ m n    n 

(8) 

(9) 

(10) 

0    0 
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It is obvious that matrices A and B are both Hermltlar,  I.e.. A    ■ A 

(a      - a    ), and B'  » B    (b      ■ b    ).    Hence D In  (7)  Is a ratio of two Hcrmltlan nm       mn ' -<       -        nm       tan 

forms.      In addition,  B    Is positive-definite, which Implies  that  for any J ^ 0, 

J B J > 0.    This is proved in reference  [13].     Since the elements of matrices ****** * 

A and B are known when the array geometry, the operating wavelength and the 

scan angle are given, the optimization problem reduces to the determination of 

the excitation matrix J such that D in (7)  is maximized. 

In receiving systems the output signal-to-noise ratio,  instead of the 

directivity, is of interest.    The output SNR may be defined as the ratio of the 

power received per unit solid angle    in the direction of the signal to the aver- 

age noise power received per unit solid angle.    It is only necessary to replace 

the power-pattern function g(e,ij>) in (4) by a more general weighting function 

w(e,<j>) which includes the spatial distribution jf noise power.    We write 

w(6,^) - g(e,*) T(e,^) , (ID 

where 7(6,$) is the spatial distribution function of noise power. Here we 

understand noise to be a combination of interference, clutter, atmospherics, 

and random noise.  It is clear that replacing g(e,<j)) by w(e,(|i) does not change 

the nature of the cptimization problem. In fact, the expression for SNR reduces 

to that for D when 1(6,it>) • 1. We expect a suppression of the sidelobes in the 

directions of high noise power for SNR improvement [6]. In the next section 

we state the theorem for maximizing D by adjusting J. 

Sometimes Hermitian forms are written as general inner products; for instance, 

N  N  * 
JTA J -   y    y  J a J - <J, A J» . ~ ~ *■        L1  '', m mn n   ~' ~ ~ m"l n»! 

They are quadratic forms in Hilbert space in the variables J . 
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III.    OPTIMIZATION BY EXCITATION ADJUSTMENTS 

A theorem In matrix algebra on the properties of a ratio of two Hermltlan 

forms  [15]  Is useful for the maximization of directivity by excitation adjustments. 

It may be stated as follows: 

Theorem 1 - If a quantity D Is expressible as a ratio of two Hermltlan 

forms as in (7) and If B Is nonslngular and positive definite, then 

the largest eigenvalue A    of the "regular pencil" of matrices A - \B 

Is the maximum obtainable 0 when J Is the eigenvector satisfying the 

homogeneous equation 

A J - A„ B J    . (12) 

For our case,  the following corollary, proved In [13], makes the optimization 

procedure particularly straightforward and simple. 

Corollary - If A in  (7)  is expressible in the form of  (8),  then 

(a)     the  largest and only nonzero eigenvalue of the regular 

pencil A - AB is 

AM = DM = H B"\' (13) 

and 

(b)     the eigenvector corresponding to X    is 

JM - B"1?    . (14) 

Equations   (13)  and  (14) solve the problem of optimization by excitation 

adjustments  for an arbitrary array.     For a given array  configuration,  it 

is only necessary to determine the elements of the matrices F    and B,  in 

accordance with   (6)   and  (10)   respectively. 
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For a linear array with elements located arbitrarily at distances d 

from a reference point, 

a^ = exp[-jk(dn  - dJsln  6   ] (15) mn n        m o 

where 6    denotes the main-beam direction measured from the normal to the o 

array, and 

mn      ATT 
d*  |    giQ,<S>)  exp[-ik(dn-dm)sin Q]dQ  . (16) 

0 0 

If the array elements are Isotropie,  gCe,*)  = 1,  and are equally spaced, 

d -d    ■  (n-m)d,   (15)  and (16)  reduce to n    m 

a      = exp[jk(m-n)d sin 6   ] (17) mn o 

and 
b      = si"k(m-n)d . 

mn (m-n)d 

As an example,  It has been shown  [12]  that an endflre array with 8 

Isotropie elements equally spaced at 0.425A  apart has a directivity of 12.5 

* 
with a uniform amplitude and cophasal excitation.      Optimization by the above 

procedure results in a directivity of 22.0.    The amplitude is tapered  (center- 

to-edge ratio:  1.69)  and the phase shift between adjacent elements  is  roughly 

170°.    Other examples of linear-array optimization by excitation adjustments 

* 
An excitation is said to be cophasal when the relative phases in the elements 
are adjusted such that the contributions of all the elements add in phase in 
the main-beam direction.    Thus,  for an endflre array with 0.425A spacing,  the 
progressive phases in the neighboring elements differ by 0-425  *   360'or 153°. 
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will be given In Section IV when spacing-perturbation techniques are dis- 

cussed. 

Besides the linear array,  the circular array represents another class 

of arrays with a simple geometry and Important practical applications.    Figure 

2 shows a general circular array with nonunlformly spaced elements in the xy-plane. 

Substituting 9    = 7T/2 in  (3), we obtain 

cos a    = sin 9 cos  (ii-ii )   . n n (19) 

Since r = p = p for all n, b  In (10) simplifies to 
n   n mn 

2TT 7T 

b      = ■— 
mn      47T 

d* g(B,<t>)  expf-ikp      cos((M    ) sin 6} sin 9d9 , 
mn mn 

(20) 

where 

and 

Pmn-2p|sin(W/2l 

T    sin if1    - sin (|) 
(J)      =» tan      ( ■   ' •'•■••)  . 

mn cos 9    - cos 0 
m n 

For a circular array of N uniformly spaced Isotropie elements, 

(21) 

(22) 

g(e,*)  =•!,()>= 2mT/N,  and 

p      = 2p|sln  (m-n)ii/N I   . 
mn ' ' (23) 

We have,  from (20), 
sin (kp    ) mn 

mn kp 
(24) 

mn 

The expressions of b      for some directive elements with typical power- 

pattern functions have also been given [13]. 
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Figure 3 compares the maximum directivity DM with the directivity 

D    under a uniform-amplitude and cophasal excitation for a 12-element 

circular array as a function of the array diameter.    We note that D   is 

everywhere higher than D    and that DM Increases very rapidly when the 

array diameter is less than 2A  (a superdirective situation).    Since super- 

directive arrays require very large currents of opposite signs in neighbor- 

ing elements,  resulting in excessive heat loss and very low radiation In- 

tensity in the direction of the main beam, it is appropriate to define a 

main-beam radiation efficiency n.    A practical optimum design then would 

be a suitable compromise between DM and n.    We define 

|E(e     * )|2 

n =  ~ 2  x 100% . (25) 

N I    I2 

i     n 

nal 

By the use of Schwarz's Inequality, it is easy to show that  [13] n equals 

100% only for uniformly excited cophasal arrays and becomes very small under 

superdirective situations.    The main-beam radiation efficiency turns out to be 

the reciprocal of the tolerance sensitivity used by Uzsoky and Solymar [10] to 

measure the mean-square variation of the maximum field with respect to the 

mean-square deviation of the excitation.    The values of n under the condi- 

tions  for D,, are also plotted in Fig.  3. 

It has been pointed out [16]   that the optimization problem becomes 

easier by applying an orthogonallzatlon process for arrays possessing a cyclic 

symmetry.    For large circular arrays with many uniformly spaced elements,  the 

tedium of inverting a large B matrix (in  (14)) can be circumvented through the 

introduction of a rotational operator [31]. 
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IV.     OPTIMIZATION BY SPACING ADJUSTMENTS 

In the preceding section optimization was achieved by adjusting the 

excitation amplitudes  and phases In the fixed elements of a given array.     If 

the element positions  are also allowed to vary, we acquire an additional 

dimension of freedom (which  represents an additional N-l degrees of freedom 

for a linear array with N elements), and we expect to be able to Improve on 

the  results obtained by excitation adjustments only,    A spacing-perturbation 

technique exists which is useful for optimizing the directivity in a given 

direction or the signal-to-nolse ratio in a given noise environment  [6]. 

This technique will be developed in this section. 

Consider a linear array of N identical elements symmetrically located 

about the origin along the x-axls.    Let   (60>  4>0) be the     direction of the 

main beam, and I exp(1* )  and I exp(-14> ) be the excitations in the nth and ' n    ^ J n n    K    J n' 

-nth elements respectively, where 

^    = kd sin 9    cos  <(>   + ij;     . (26) n n o o        n 

In  (26),  d    is the distance of the nth element  from the origin, and ty    is 

the phase shift from cophasal operation.    Note that,  except for the assumed 

symmetry about the origin,  there is no restriction on element spaclngs which 

may be nonunlform and the elements themselves need not be omnidirectional. 

If N is odd    and equals  2M-1,  the array factor is 

Only very minor modifications are needed when N is even.    The formulation 
Is entirely parallel. 
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M 
E(u) « I    + 2    I    I    cos(6 u + ^ ) (27) 

o T    n n n n=l 

where 

u = kd(sin 6 cos $ - sin 6    cos  (})  ) (28) 

6n = d /d (29) n        n 

and d, a normalizing distance, may be any choice of convenience.    For ex- 

ample, If one starts with an equally spaced array.  It would be natural to 

make d the uniform spacing between neighboring elements.    We write the 

output slgnal-to-nolse ratio in the direction of the signal  (6 » 6  , $ = $ 

u * 0) as 

SNR = iMlli  (30) 
/IT 71 

d* |E(u)|2 w(e,4))  sin ede _1 
An  J 

0 0 

where w(6,4i)  is a weighting function defined in (11).    Our problem is to 

find the set of normalized element positions {6   }  such that SNR is maxi- 

mized for a given set of excitation amplitudes and phases.     Note that this 

becomes a directivity maximization problem when w(6,(|)) - g(e,0). 

Let (6  } denote the original normalized element positions, and 

6    = 6° + x (31) n        n       n 

where x    represents the spacing perturbation for the nth element and 

x    <<  1.    Substitution of  (31)  in  (2 7) yields approximately n 

M 
E(u)  = E0(u)   - 2    I    I x u sln((50u + $  ) (32) i     n n n n n=l 
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where E  (u)  is the original, unperturbed array factor with 6    substituted 

for ^    In  (27).    Using (32), we can write  (30)  in the following form: 

where 

SNR 

2TT 

l^jQ)!2 , 
a - 2x,ß + x'C x 

a - —    |       d* |E0(u)|2 w(9,^) sin Ode 

0 0 

X      ■    j, X. , X«,    •    •    •    X,    •    •     .,    Xj. J 

(33) 

(34) 

(35) 

is the transpose of the column matrix of spacing perturbations x;  B is a 

column matrix of typical element 

2TI 

ßn = ^T j       d* J InuEü(u)w(e,*) 

sin (6  u + ilO sin Sde; n        rn ' 

and C [C    ]  Is an NxN square matrix with 
mn n 

2v 

mn      TT 
d4> I I u   w(6,4i) m n        *  »*' 

(36) 

sin  (60u + <p ) sin  (60u + ij; ) sin 9de ,     (37) mm n n 

It can readily be shown that C is symmetric and positive definite. 

Use can then be made of the following theorem which Is proved in the 

Appendix. 
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Theorem 2 - If a quantity SNR can be expressed in terms of an N*l 

real column vector x as In (33), where a is a constant, ß is another 

N*l real column vector, and C is an N*N positive definite, symmetric, 

square matrix, then 

Max   SNR -  lE ^IL  . (38) 
(x-x^.)     o - ß C"iß 

and 

*M-<rV <39> 

Equations (38) and (39) give the results of a first-order per- 

turbation. After the components of x^ have been determined from (39), 

one can then use (6 + x^) as the new normalized element-position column 

matrix and perform a second-order perturbation to obtain further improvement 

in the performance index. This process can be repeated until it becomes 

evident that further iteration yields a negligible improvement. The final 

values of {ö } determine the element positions for a maximum SNR for the 

given excitation. Now this perturbed nonuniformly spaced array can be 

further optimized by proper amplifications and phase shifts in the array 

elements using the method developed in the preceding section [6]. A 

second local maximum will be reached, which may possibly be further im- 

proved by holding the excitation unchanged and again perturbing the spacings. 

The cycle may be repeated until further adjustments are no longer worthwhile. 

We illustrate the application of the above technique with a broadside 

array of 7 Isotropie elements. It is desired to optimize the array for 

maximum SNR in a noise environment, T(u) specified by Fig. 4 with a*15. 
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u1 - (l/4)(2ndA) and u2 - (1/12) (2nd/A).    The nonwllzing distance, d, 

Is chosen Co be 0.885A which corresponds to Che spacing for oaxlmuffl direc- 

tivity in a uniformly spaced linear array with 7 Isotropie elements.    The 

results for the (a) space-perturbed,  (b) excitation-adjusted (by amplifi- 

cation), and (c) optimized arrays are listed in Table 1.    We note that 

large improvements in SNR are possible by optimization through either 

Table 1.    SNR Optimization for Seven-Element Broadside Array 

0 1 ,2nd. 
ui-4 (T-) u2 "H ("r)-    do 

lo h l2 h <drVf (d2-V7 <d3-d2>f SNR 

Uniform array 1.00 1.00 1.00 1.00 1.77 1.77 1.77 16.0 

Space-perturbed 
array same as above                    1.65 1.76 2.10 19.8 

Exc.-adjusted 
perturbed array 1.00 0.89 0.67 0.39 same as above 78.1 

Optimized array 1.00 0.86 0.59 0.40 1.66 1.72 1.74 181.9 

spacing perturbation or excitation adjustments, and that the SNR of the 

optimized array is about 11.4 times chat of the original uniform array. 

Of course, the array optimized for a maximum SNR is not the same as the one 

for a maximum directivity.    The directivity of the SNR-optimlzed array in 

Table 1  (sketched in Fig.  5(a))  is 10.6, whereas a directivity-optimized 

broadside array of  7 Isotropie elements has a directivity of 10.63 [6]. 
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The radiation patterns of the SNR-optlmized array are plotted in Fig. 5(b), 

where the spatial distribution of the noise or Interference power is also 

shown. It is interesting to see that, at the expense of a slightly wider 

main beam, the sldelobes of the optimized array are everywhere lower than 

those of the uniform array. In particular, the first sidelobe, which 

normally occurs in a region where the noise power is high, is much sup- 

pressed and its position slightly shifted. 
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V. OPTIMIZATION BY PHASE ADJUSTMENTS 

In Section III we discussed the method for maximizing array directivity 

by adjusting the excitation amplitudes and phases In the array elements. Ac- 

curate amplitude adjustments require the use of precision amplifiers or attenu- 

ators, or specially designed directional couplers. It is hence of both theo- 

retical and practical interest to develop a technique for optimizing the 

directivity of uniformly excited arrays requiring only phase adjustments. The 

elimination of the need for amplitude adjustments would result in a simplified 

feed structure and a reduced cost. 

Directivity maximization under the constraint of a uiiform amplitude 

in all the array elements can be formulated by Lagrange multiplier methods in 

several ways. However, it was found that the resulting equations were not 

amenable to a stable solution even by iterative methods, because of con- 

vergence problems. On the other hand, a perturbation procedure similar to 

that employed in Section IV for spacing adjustments can be used for the phase- 

adjustment problem [18]. The essential steps of this procedure will be 

developed In the following. 

Consider a linear array of 2M+1 symmetrically located, equally spaced, 

identical elements, all with the same excitation amplitude I. The array 

factor is then, from (2 7), 

M 
E(u) -1(1 + 2 I    cosCnu + U< )] , (AC) 

i        n 

n«! 

where u is defined in  (28) and ty    is the phase shift  from cophasal operation. 

We may write 
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*n - *° + xn (41) 

where ü»    is an assumed Initial value and x    << 1 is a small perturbation. n n 

Ordinarily it Is convenient to start from a cophasal excitation,  i.e., ^ »0. 

Substituting (41) in (40), we obtain approximately 

M 
E(u) - E0(u)  - 21    I    x 8ln(nu + 1>0)   . (42) '',    n n n»l 

Using (42) in (4), we can express the directivity of the array in the 

following form: 

F lE(eo- V 

where 

and o,, 6,, and C. are similar to a, B, and C in (33). a, is identical 

to a in (34). and the elements of B, and C, can be obtained froi.i (36) 

and (37) respectively with I ■ I ■ I and the argument (6 u + c ) of the m       n n n 

sine functions replaced by  (nu + tji ).    Element power-pattern function 

g(6,4i)  replaces weighting function w(6l4i) in computing directivity. 

It is now obvious that the same Theorem 2, which is proved in the 

Appendix and found useful for optimization by spacing adjustments, can be 

used for maximizing D in (43) by phase adjustments.    The required phase 

changes in the array elements are determined from 

x1 - CTV (45) 

which represents a first-order perturbation from the initial values 

{\\)  ).    One may then treat  {i>    + x }  as the new initial values and perform n ' n       n K 
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a second-order perturbation.    This process may be repeated until It Is 

apparent that a maximum directivity has been obtained. 

Although the preceding formulation for optimization by phase adjust- 

ments starts with a linear array. It Is clear that the procedure can be 

applied to an arbitrary three-dimensional array.    In particular, for a 

circular array of N elements with radius p In the xy-plane, a phase per- 

turbation as  Indicated In  (41)  results In an array factor 

N 
E(e,*) - E0(9,^)  - 21    I    x sln(a    + *0) (46) '*,    n n       n n«l 

with 

A    ■ kp[sln 6 cos(4)-$ )  - sin 6    cosU -0 )] (47) n n o o    n 

where <p    denotes the location of the nth element and (d A ) Is the dlrec- n o' o 

tlon of the main beam.    We note that  (46) Is entirely similar to (42). 

Substitution of (46) In (4) will yield a directivity expression In the form 

of  (43), and hence the same optimization procedure follows.    The optimum 

directivity, 0 , obtained by phase adjustments only for a circular array 

with 12 uniformly spaced short dlpoles Is plotted In Fig. 6 as a function 

of array diameter.    In the same figure are also plotted DM the maximum 

directivity when both amplitudes and phases are adjusted, and D ,  the 

directivity under a uniform-amplitude and cophasal excitation.    We note that 

the D    curve lies everywhere between the DM and D    curves.    For most array 

diameters less than 3>   (element spacing less than 3A/4) an Improvement of 

about 2 dB in directivity is possible by phase adjustments alone.    When the 

array diameter is very small,  the directivity of the phase-adjusted array 

increases rapidly, indicating a superdlrectlve situation which is absent in a 

uniform cophasal array.    The main-beam radiation efficiency of a superdlrectlve 

array tends to be very low,  as has been pointed out in Section III. 

-22- 



VI. OPTIMIZATION WITH CONSTRAINTS 

In previous sections we discussed techniques for maximizing the 

directivity or the slgnal-to-nolse ratio of an antenna array without con- 

straints; that Is, without Imposing at the saire time a requirement on any 

other performance Index of the array. We have already seen that a maximum 

directivity for an array with closely spaced elements Is accompanied by a 

low main-beam radiation efficiency. In practice, we may desire that a 

maximum directivity be obtained together with a prescribed value for main- 

beam radiation efficiency. The existence of constraints cr auxiliary con- 

ditions effectively reduces the total number of Independent variables which 

can be adjusted for optimization.  In such cases, a procedure using Lagrange 

multipliers can be applied to determine the stationary value of directivity 

(19]- This approach has been employed [5] to maximize slgnal-to-nolse ratio 

under a constraint on a Q-factor. The Q-factor Is a quantity which Is pro- 

portional to the ratio of the directivity and the main-beam radiation ef- 

ficiency.  It turns out that this approach results In a rather Involved 

numerical procedure. We shall not go Into It further here. 

A more useful clans  of optimization problems with constraints per- 

tains to the maximization of some performance Index while controlling the 

array pattern in certain definite ways.  For Instance, one may wish to have 

a maximum directivity In the direction of some distant transmitter or receiver 

and, at the same time, to minimize the Interference from some other directions. 

This Is equivalent to the problem of directivity maximization with controlled 

locations of certain pattern nulls, and can be reduced to that of maximizing 
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the ratio of two Hermltlan forms, as studied In Section III, through the 

Introduction of a constraint matrix. 

The array factor In (1) can be written as the Inner product of the 

space vector F ■ [exp(-1k.r cos a )] and the excitation vector J defined 
" n n «v 

in  (5);  i.e., 

E(M) - <F,/> - F+J    . (48) 

Pattern nulls In the directions  (6.,  $.) are specified by homogeneous 

equations 

N 

I 
n=l 

i => 1,  2,...,  M < (N-l) 

+ w 

FT J =    J"    I exp[J(ii;    + kr    cos a.   ) ] = 0   , (49) ~i ~ ,    n    r J    n n in ' 

where a.  are obtained from (2) by setting 6 ■ 9. and 4> ■ (t>.. A geo- 

metrical interpretation of (49) is that the excitation vector J which 

we seek to maximize the directivity in the dlrecti'T. (6 , 4) ) is now 

required to be simultaneously orthogonal to M Independent constraint 

vectors F.. The N-dlmensional space is divided into two mutually or- 

thogonal subspaces: an M-dlmenslonal subspace containing the constraint 

vectors and an (N-M)-dimensional subspace where the excitation vector J 

must lie. The mathematical procedure [21] for maximization under con- 

straints consists of (a) finding an appropriate set of M mutually or- 

thogonal vectors that occupy the same subspace as the constraint vectors 

F., F? F , (b) obtaining an additional orthogonal (N-M) vectors 

which at the same time are orthogonal to the first M vectors,(c) forming 
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from steps (a) and (b) an N b\ N normalized constraint matrix which Is 

the unitary matrix for coordinate transformation, (d) transforming the 

directivity expression as a ratio of two Hermltlan forms to the new 

orthogonal coordinate system, and (e) maximizing the directivity In the 

same manner as outlined In Section III. 

The Gram-Schmidt procedure [19] provides a method for determining 

an orthonormal basis for a vector space In which any set of spanning vec- 

tors Is known. This method can be used to find the constraint matrix In 

steps (a) and (b). Assuming P to be the normalized constraint matrix 

which Is also the transformation matrix, we write 

P J - J . (50) 

The directivity In (7) becomes, after the coordinate transformation, 

J+ (P A P+)J   J+ A J 
**Q *v A# »"v   »s#Q     *vQ "« C ^ C 

J+ (P B P+)J   J+ B J 
(51) 

Inasmuch as each of the first M mutually orthogonal vectors Is a linear 

combination of the constraint vectors, the first M rows of J In (50) are 
~c 

linear combinations of the homogeneous constraint equations (49) and are 

therefore zeros. Hence the first M entries In J and the first M rows 
~c 

and M columns of A and B can be discarded, resulting in an abridged form 

for directivity [20]: 

J A J 

J1 B J 
~a ~a ~,a 

(52) 

where A and B are the abridged (N-M) by (N-M) matrices and J is the ~a   ~a o       ^ ^a 
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abridged (N-M)-element column vector. The remainder of the optimization 

process then follows in exactly the same manner as that pertaining to the 

unconstrained D in (7), Section 111, except that the numerical problem is 

now simpler because the matrices involved are of a lower rank  It is 

obvious that the maximum obtainable directivity with constraints will be 

less than that without constraints on account of the reduced freedom. 

Typical results on maximum directivity with null placements and with re- 

duced radiation level in an angular sector have been published [20]. 
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VII.  CONSIDERATION OF MUTUAL COUPLING 

One tacit assumption Implied In the optimization techniques which we 

have considered thus far Is that all the elements In an array have the same 

radiation pattern. This Is tantamount to assuming that mutual-coupling 

effects are negligible.  For large arrays with many elements this assump- 

tion Is acceptable If our Interest lies In array directivity and not In the 

current distribution or the exact radiation pattern of each element. The 

consideration of mutual-coupling effects In array optimization greatly com- 

plicates the problem. To the author's knowledge, no work has been published 

on array synthesis or optimization for mutually coupled aperture-type radi- 

ators. With wire antennas the method of moments can be used to obtain 

numerical answers [23-26]. In this section we will outline the optimization 

procedure for arrays of wire antennas when mutual coupling Is not neglected. 

The moment method for solving electromagnetic problems consists mainly 

of three steps; namely, the formulation of the governing Integro-dlfferentlal 

equations, the expansion of the unknown functions In terms of a set of linearly 

Independent basis functions, and the testing of the expanded equation by form- 

ing Inner products with a set of linearly Independent set of weighting func- 

tions [26]. The result is a set of simultaneous equations which can be 

solved by matrix methods. The choice of the basis and weighting functions 

depends on the desired accuracy and the ease In evaluating the coefficients 

in the simultaneous equations. One convenient technique In the choice of 

basis functions is to divide the domain of the unknown function Into small 
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Intervals or subsections.    Simple basis functions such as pulses or triangles 

are defined to exist over one or a few such subsections and to be zero else- 

where.    The simplest weighting functions are Dlrac delta functions defined 

at discrete points at which the expanded governing equations are to be satis- 

fied.    This is the point-matching or sampling method. 

For thin wire antennas,  the currents and charges on the wires can be 

approximated by current and charge filaments along the antenna axes.    We 

consider an array of thin linear antennas parallel to the z-axls.    From the 

Maxwell's equation for tlme-harmonlc fields In a homogeneous medium 

V x  H - Jue  E + J (53) 

and H ■ — 7  * Ä. we have u 

Now 

and 

E - — (^ V x 7 x Ä - J). (54) 

Vx7xÄ-77.Ä-V2Ä (55) 

(72 + k2) A- - uJ. (56) 

2        2 where k    - u uc.    Combination of (55) and (56) with (54) yields 

E - 7^— (7 7  •  Ä + k2A)   . (57) 

Since J has only a z-component, we can rewrite  (57) as a scalar equation 

2 

z      JWUE    3z2 z • 

For thin linear antennas, the tangential electric field E  at the center 
zp 

of a typical pth subsection Is then [25] 
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zp  juie 3z2 

l(Z')exp[-jk|? - r'|] 
 E  dz' ,   (59) 

all      ^rrp-r'| 
antennas 

where r Is the position vector to the center of the pth subsection under 

consideration, and r* Is a vector from the origin to a point on an antenna 

at which the current is I(z'). If each of the N antennas In the array Is 

divided into S subsections of length M   which carries a constant current Iq, 

(59) can be approximated by a summation: 

.   I    I     -^(ü-+k2) 
exP[-jk|7p -  r'l] 

47i | r - r'l 
q 

dzV- (60) 

In  (60), M - NS.    The quantity in the wavy brackets  is  the electric field 

at the center of subsection p due to a unit current in subsection q and 

can be written as Z    /AH, where equal subsections  (A£    ■ M.)  are assumed 
pq H q 

for simplicity.    Thus, 

M 
E,   (Li) - V    -    I    Z      I     , (61) 

zp P      qti    P«!    <« 

or,  in matrix form, 

V - Z I  , (62) 

where V » (V ] and I - [I ] are M by 1 column matrices and Z - [Z  ] 
-vp ^q ~pq 

is  an M by M square matrix.    Z may be called a generalized Impedance 

matrix and depends only on the  geometrical configuration of the array. 

In the terminology of the method of moments,   (62)   is  the  result of 

(a)  using pulse basis  functions each of which exists over only one sub- 
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section,   (b) using an integral-type inner product, and (c) using Dlrac delta 

functions as weighting functions.    The differencial operator in (60) may be 

approximated by a second-order difference operator and computer subroutines 

for the calculation of Z      are available [25].    In a radiation problem V is pq •-     * 

a column matrix of known voltages which are all zero except for the exci- 

tation voltages at feed points. Column matrix I  determines the current 

distributions on the wire antennas: 

I - Z^V ■ Y V . (63) 
*V      ^M     **       *W  Ä# 

With I known, all field quantities of Interest can be determined. 

The array directivity defined In (4) can be expressed In terms of the 

total power input to the array, P. , If the antenna wires are assumed to 

be perfectly conducting. The electric field In the far zone of an array 

consisting of z-dlrected wire antennas Is 

Ee - - JuAe - JwA2 sin 9 (64) 

Thus, ,     , 
4nr':|E(eo)r/2 

n ■      ' i ■  ■ 

tPln 

2nr2|uA   sin 9  I2 

'     *l    "   ■ 
where c, is the Intrinsic impedance of the medium.    The time-average input 

power to the array is 

'm-W^inV- (66) 

Since nonzero voltages exist only at the feed points,   (66) can be written 

as 
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In 7 Re  (1+V) 

7 ** (v+v+K) 

Y    + Y 
i V' [h    % v 
2 ~1  l      2       J  -1 (67) 

where V.  is a column matrix reduced from V by retaining only Che N  (number 

of wire antennas in the array) nonzero feed-point voltages, and Y    is an N«N 

admittance matrix reduced from Y by deleting all elements that do not cor- 

respond to the feed subsections. 

In the far zone, the magnetic potential can be approximated by 

u(AO M 
AZ " ^"PH^     I    VXplJkrq  C08  aq1 (68) 

q-1 

where a    is the angle between the position vector to the qth subsection 

carrying current I    and that to the field point.    Using the matrix repre- 

sentations of F as in (6) and of I a« in (62), we can write (68) as 

A    - ii^'exp(-Jkr) F I z        Anr        r    J    ' -. « 

or In reduced matrices as 

A    - •14^-exp(-Jkr) F! Y^,   . z       Uvr       r   J       -l -1-1 

(69) 

(70) 

For simplicity we write 

t        t 
Gi - F; Yi ~i   ~i -i. 

With  (67),  (70) and (71), D in (65) becomes 

(uu/U sin 6 )2 vl G.  G| V, _       o      ^1 ~1  ~1  ^1 
D   „    __ ..       ■    v* 

4TI4 Y    + Y' 

~1  l       2       J~] 

(71) 

(72) 
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It can be shown [23] that the excitation voltage matrix required for making 

D in (72) a maximum Is 

and 
2    Y ♦ Y 

DM   Ann  £l [  2  J2l 

(73) 

(74) 

The directivity optimization problem with voltage excitation la now com- 

pletcly solved, and the effect of mutual coupling has been taken into 

consideration. As can be seen, the main task in obtaining numerical 

solutions lies in the determination of the admittance matrix Y.. 

Using the above procedure, Cummins [23] determined the maximum di- 

rectivity in the principal H-plane of a circular array of 4 uniformly spaced 

center-fed wire antennas. Figure 7 shows the variation of maximum directivity 

(DM) versus antenna length (2h/\) with array diameter (d/A) as the parameter. 

The points marked by crosses correspond to the maximum directivity of a 

circular array of 4 Isotropie sources as computed by the method outlined 

in Section III. 

The solution of the dual problem of an array excited by a set of 

current sources follows an entirely similar procedure [23]. 
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VIII.    OTHER CONSIDERATIONS 

We discuss here several related aspects of the array optimization 

problem which either can be treated by an extension of some of the pre- 

ceding techniques or need special attention. 

(a)    Maximization of Power Gain - When the antenna wires are not 

perfectly conducting,  resistive losses occur and power gain is no longer 

the same as directivity or directive gain.    Electromagnetically speaking, 

E      in (61) on the surface of subsection p is no longer zero, but is equal 

to the product of I    and Z.,  the internal impedance per unit length of the 

wire conductor. 

where 

and 

Vn - E    (AO - Z'   I     , (75) p        zp pp p 

Z'    - Z. (AO (76) 
pp        1 

4 ll2 1J.4 ^ - (Jf >    ■$■■ an 

In  (77), o and 5 are respectively the conductivity and the skin depth of the 

wire conductor at the operating frequency.    Hence, if the generalized im- 

pedance matrix Z for perfectly conducting wires has been found, the only 

modification needed for a moment solution with finitely conducting wires 

is the addition of Z*    - Z. (M)  to the diagonal elements of Z. pp   i «» ~ 

It is obvious that the achievable maximum power gain for a given array 

configuration is lower than the maximum directivity because of the resistive 

losses. Numerical results have also shown [23] that for arrays with closely 
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spaced elements ehe required excitations for maximum power gain are not 

the same as Chose for maximum directivity. 

(b) Arrays with Random Errors - Under practical applications random 

errors exist in excitation amplitudes and phases as well as In element posi- 

tions. It is then of Interest to examine the effect of random errors In 

these design parameters on Che optimization procedure. This has been done 

for arrays with an arbitrary geometrical configuration [27-30]. Correla- 

tions are allowed Co exisc between Che errors in Che array paramecers and 

no rescrlcdons are necessary either on Che magnitude or on the probability 

distribution of the random errors. The dependence of the expected direc- 

tivity or SNR, the main-beam radiation efficiency, Che optimum excitation 

amplitudes and phases and the radiation pattern on the variance and cor- 

relation distance of parameter errors has been studied [29,30]. It ws^ 

found that the excitations calculated on the basis of no random errors do 

not yield a maximum expected directivity when parameter errors exisc. 

(c) Techniques for Large Arrays - In Che numerical solution of the 

array optimization problem by the method of moments In Section VII, It Is 

necessary to invert the generalized Impedance matrix Z, as defined in (62). 

The order of the matrix Z is M»NS, which is the product of the number of 

wire antennas in the array and the number of subsections for each antenna 

(assuming equal antenna lengths).  Hence M can be very large for large 

arrays with many elements, especially when the elements are of a length 

which is an appreciable fraction of Che operadng wavelengCh. The feasi- 

bility of inverting large matrices is constrained by computer memory 
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capacity and the cost.    Alternative  techniques which will relax these con- 

straints are  therefore of great importance. 

For circular arrays with many uniformly spaced elements,   the inver- 

sion of the relevant  large matrix is  facilitated through diagonalizatlon 

by a change of basis with a unitary transformation matrix [31].    The columns 

of the transformation matrix are tlu eigenvectors of a rotational operator. 

With this technique the Inversion of the large matrix can be evaluated by 

straightforward matrix multiplication. 

For array configurations with no rotational symmetry other methods 

must be sought.    The far-zone electric field due to an array of N parallel 

z-directed dlpoles is 

-Jß  r    N      jß r 'ü     fh jß z'cos  6 . -itsrn       iDf-u     r 

n-1 i 
)e sin 6 dz'     ,   (78) 

-h 

where ß    Is the phase constant,  r    is the vector from the origin to the 

center of the nth dlpole, and ü is the unit vector from the origin to 

the observation point.    The first step in the optimization problem is the 

insertion of (78) in the expression for the performance index of interest. 

In order to maximize the performance index,  it is necessary to use an appro- 

priate expansion for the currents I  (z*).    The moment method discussed in 

Section VII used expansion functions defined over subsections, which re- 

sulted in M by M matrices.    An alternative    is to use the three-term theory 

for cylindrical antennas developed by King and his associates   [32].    This 
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has been done, and it has been found Chat, by using some special properties 

of the integrals involved, accurate numerical solutions of array optimiza- 

tion problems can be obtained by working with matrices of order N (not 3N 

as  first suspected, where N • M/S).    Details of this technique together 

with numerical  results will be  reported in Part   (B). 
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APPENDIX to PART   (A)  - PROOF OF THEOREM 2 

Let 

P - o - 2x,g + x'C x . (A-l) 

which is the denominator of the quantity in (32). It is necessary to 

prove that if C Is positive definite P will be minimum at 

and 

2M " S"1* 
min P - a - ß,C'1ß . 

(S-SM) 

Proof;    If C 1» positive definite,  It is known that  [15] 

(ß'C^ßXx'Cx)  >   (x* ß)2 

or 
x'Cx >  i?- (x*  ß)2  , 

ß'C -"ß 

where the equality sign applies when 

x - x,. - C'1ß . 

Let c - ß'C"    ß > 0, and b - x'  ß.    We have,  from (A-l) and  (A-5) 

L2 

But 

P - A-2b + x'Cx >  A - 2b + — . 

A-2b+ — -A-C+- (c-b)2  '  A - c   . c c •- 

Combining (A-6)  and (A-7), we obtain 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

(A-2) 

(A-6) 

(A-7) 

p ' A - ß,c'1e , 

where the equality sign holds with  (A-2); hence theorem 2 is proved. 

(A-8) 
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PART   (B).     INTEGRAL-EQUATION APPROACH FOR 

OPTIMIZING ARRAYS WITH MUTUAL COUPLING 

I.     INTRODUcriON 

In Part  (A) we have discussed various techniques for optimizing some 

chosen performance indices of antenna arrays.    When the array elements are 

parallel wire antennas,  the method of moments can be used for optimization 

which Includes the effect of mutual coupling.    As explained In Part  (A) - 

Section VII,  It was found convenient to Incorporate the method of sub- 

sections to convert the governing Integro-dlfferentlal equations Into 

matrix equations by using pulse expansion functions and Impulsive weight- 

ing functions.    For an N-element array each subdivided Into S segments, an M by 

M (M"N*S) generalized Impedance matrix results which must be Inverted *n the 

optimization procedure.    This inversion process presents practical diffi- 

culties when N and S are large, because of limitations In computer memory 

capacity and In allowable cost.    In this Part  (B), we present a new approach 

for array optimization with the consideration of mutual coupling that re- 

quires the inversion of only an N by N matrix.    Since computer time (cost) 

required is proportional to the cubic power of the rank of the matrix, we 
3 

achieve a saving by a factor of S .    If S equals 10,  for example, this 

means a 1000-fold saving,  a considerable  factor indeed. 

The approach we take starts with an integral-equation formulation for 

the array in terms of the unknown current distributions on the array elements. 
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Instead of using the methods of momsnts and subsections, we expand the 

current distribution functions as superpositions of suitable sinusoidal 

functions.    In particular, we make use the three-term theory developed 

by King and his associates  [32].    The subsequent theoretical development 

is quit? Involved, but we have succeeded in a considerable reduction in 

the order (and rank) of the matrices Involved.    Numerical solutions for 

typical arrays can be obtained with a few dollars' worth of computer time. 
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II.     INTEGRAL-EQUATION FORMULATION 

We consider an array of N parallel, z-directcd, center-fed dipol« 

antennas each of radius a and half-length h.    Th« typical nth dipole is 

center-driven by a delta-function generator of strength V .    The dipole 

• conductor is assumed to be perfectly conducting and Ba << 1, where 6 is the 

phase constant.    The integral equation for the nth dipole in terns of the 

currents in all the array elements is  [32] 

N       .h .V 
I      I    1  («^K    (z.r^dz' - --^ [C cos ßz +T^sin ß|z|] (79) 

m-1     • 
-n 

where 

m nm    * 30      n 2 

-Jßr J    mn 
K    (z.z') - £—  (80) mn r mn 

r     - ((z-z')2 + bl1/2 (81) mi mn 

(a      ,      ro»n 
(82) 

d      ,      m^n. mn 

Letting z-h in (79), we have 

N      fh . V„ 
I      |    I (z'Wih.z')*!' - - -fer (C cos Bh + J «in ßh]. (83) '*.     I      m mn ju      n i m^l    ! -n 

Eliminating   C cos Sh from (79) and (83), we get 

N  ,h 

I      I I (z'HK (z.z') cos Bh - K, (h.z*) cos Bz]dz' 
'•,     m     mn mn 

m-1 ' 
-n 

• ^77 V sin ß (h - |z|). (84) 
ou n 
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Equation (84) can be rewritten as 

h N       r 

-n 

(z^K*   (z,z') cos Sh dz* nn 

where 

and 

- ir [V sin ß (h-|z|) + u (cos ßz - cos ßh)]  , ou      n n 

K'   (z.z') - K    (z.z1) - K    (h.z1) ran    ' mn    ' nm    ' 

N 
Un--J60    I I  (z^K    (h.z^dz1 

in nn 

(85) 

(86) 

(87) 

-h 

With n"l,2 N, we obtain N simultaneous integral equations from 

(85). 
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ill.    THE THREE-TERM THEORY 

King's three-term theory approximates the currents !_(*) with three 

parts: one part  is a sinusoid maintained directly by the driving voltage, 

and the other two parts are  J shifted cosine and a shifted cosine with 

half-angle arguments which are induced by coupling between different parts 

of the antennas. 

I   (z) -    I    A^k)S. (z) (88) 

where 

S1(2) - sin 6  (h -  |z|) (89) 

S2(2)  - cos  Bz - cos 6h (90) 

S3(2) - tos Y ßz - cos j ßh (91) 

The integral on the left side of (85)  possesses the following approximate 

properties for the currents in (88)  - (91)  for different ranges of Bb mn 

values  [33]: 

(a) For ßb^ <  1, mn 

h 

f    I  (Z'JK'  „(2,2')  cos ßh d^, » «J-I  I  (z). (92) j       m mnK i    m 
-h 

where the function K*  a(z,z') denotes the real part of K1   (zlz'). mnK mn 

(b) For  ib^   -  1, mn - 

h 
r 

Sl(z,)KmnR(z,Z,) cos 6h dz' ' ^2 S2(z) ' (93) 

-h 
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(c) For all values of Bb , on 

S2(2,)KiinR(z,Z,) C08 ßh dz' " ^3S2(z)     (9A) 

-h 

S3(z,)KninR(z,Z,) co8 Sh dz' ^S3(z) (95) 

-h 

Iin(f,)KimiI<Z,Z,) C08 ßh dz, ' ^S*^» (96) 

-h 

where the function K' .(z.z*) denotes the Imaginary part of K' (z.z1). 
mni tnn 

The proportionality constants ijil, cl»  ^v ^1 an<* ^s in approximations 

(92) - (96) are best determined where the distribution functions In the 

integrands are at their maximum values. 

Under normal circumstances 6b      >  1 for mtta and 6b      ■ 6a <<   1. mn nn 

SU>stituting (88) - (91) in the left side of (85) and using (92) - (96), 

we have 

(a) m-n, h^n - 6a < 1. 

I ^ h (zMK* (z.z*) cos ßh dz* nn 
-h 

" ^ *m"  V" + *"' »ni" S3<"    <"' 

-h 

A(2) S(,(z') K' (z.z') cos 6h dz' n       i nn 

-A(2>,'(3>S2(Z)+A<2)C'(5)S3(Z) n    nnR 2     n        nnl  3 
(98) 
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I A(3) SAz')K.'  (z.z1) cos ßh dz* J  n   J    nn 
-h 

A(3) ^(3) S3(z) n    nn  3  • (99) 

(b) mito, db  - ßd  > 1. 
im    nn — 

Aa) SAz')V  (z,z') cos ßh dz* 
m        i mn 

-h 

Al1)'*™" h^  +* ™R)S2<'> 
+ ♦i1)s3<')l       <10<» 

h 

I A(2) S.Cz^K' (z.z') cos ßh dz' j  m   z    mn 
-h 

(101) 

h 

Aw/ S,(z,)K, (z.z1) cos ßh dz' - A'"" ^,W/S,(z). Z3' »•<3>tl, m   mn  3 
-h 

The proportionality constants in (97) - (102) are: 

h 

.(1) 
'mnR 

.  r       cos oR,  cos BR- 

-h 

r COS 
cos ßh I S^z'H— 

cos BR.  cos BR. 
^ r ^Jdz* ,  ßh > n/2 

-h 

with 

(102) 

(103) 
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R-, - 

iz'2 + b2 )1/2 

inn 

[(h-z')2 + b2  ]1/2 

tnn 

((h-z'-A/A)2 + b2  ]1/2 

DU 

(104) 

(105) 

(106) 

*, 
,(2)        cos Bh cos ßR.      cos 3R„ 

mnR       l-coe Bh 

r COS   BK. 

-h l 

■jdz' (107) 

*, 
,(3) _    cos Sh        [ 
mnR t-r-na   Ah ' 

COS   8R, COS    BR0 

mnR        1-cos Bh 
-h i 

•Jdz' (108) 

*, 
,(1)        -cos Bh 
mnl        1-cos Bh/2 

sin 8R,      sin BR0 
si(2,>I-T -Jdz' 

-h 

.,1(2) _    -cos Bh 
'mnl        1-cos 6h/2 

sin ßR.      sin BR. 

-h 

*, 
,(3) „      cos Bh 
mn l-cos Bh/2 

S2(z')I— 

-JBR1 

-Jdz' 

-JßR, 

-Jdz' 

-h 

(109) 

(HO) 

(111) 

When Bh ■ IT/2, expressions (109) - (111) become indeterminate and com- 

ponent current functions different from those given in (89) - (91) must 

be chosen. This special case will be discussed in Section V. 

We arc now ready to substitute the above in (85) and equate the 

coefficients of S. (z), k-1,2,3. We obtain 3 sets of equations (n-1,2,...,N): 
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L.    m    vinnR        60    n 

In (113), 

N        h 

where 

(112) 

(113) 

B#n 

U    - - J60    J I  (z')K    (h.z^dz' 
m-1    / -n 

■-J60    '    t^^^*^^^*^^^) (115> '■,      m      mn m      mn m     mn m-l 

*11}M  m    1     S^zMK    (h.z^dz1 (116) ntn ;      l mn 
-h 

h 

^(h) -    f    S^z^K    (h.z'Jdz1 (117) mn j      i mn 
-h 

h 
c'™''h) "    '    S3(z,)K|nn(h,z,)dz,. (118) 

-h 

With  (115)  -  (118). we can rewrite (113) as 
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ml 

b.    n        mxK mn '-,    m      mn 

where 6      is a Kronecker delta.    For an N-element array, n-1.2 N, 
mn 

and each of (112),   (119), and (114)  represents N simultaneous equations. 

It is therefore convenient to use a matrix notation. 
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IV.    MATRIX EQUATIONS 

Defining N*! column matrices   [A(1)],   IA(2)],   [A^3)],  and  [V], we 

can write  (112),   (119), and (114)  as 

O^'i-fe"" (120) 

^-^„^R^li^HA^] + l*IliR
)-*™)Ch)][A(2)] - (^OOHA*3*] (121) mn mnK  mn mnK  mn mn 

i^,)>'(l,i+'^,'>*(2>) + '^3)"*(3)>-'>- (122) 

Equations (120) - (122) can be inverted and rewritten as 

(A(1)] - (P(1)][V] 

[A(2)] - IP(2)][V] 

[A(3)] - [P(3)][V] , 

(123) 

(12A) 

(125) 

where 

IP 

[P 

(P 

(1) 

(2) 

(3) 

and 

(: 
(b) 

l.p 

60 UmnR 1 

i^r^^itp^i 

,(3)1-lf.i,(l),fo(l) i*:' M mn k'THP^') - (*
,(3)

]"
1
[^

,(
?
)
1(P

(2)
] mnl mn     mnl 

>'l3,<"))t^3,>-1t^>1 + ,^'- *«'<«. 

(126) 

(127) 

(128) 

B -l(1-imn>^)-i1)(h>] - ^mn^^H^3)"1!^!    (129) 
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The current distribution in the mth dipole in  (88) can also be 

extended to the N-element array and written in a matrix form. 

(I] - S1(z)[A(1)] + S2U)IA(2)] + S3(2)(A(3)]. (130) 

Combining (123) - (125) with (130), we obtain 

II] - [Y][V] (131) 

where the mth element of the admittance matrix [Y] is 

Y(2) - S1(z)Pi^
) + S,U)P^) + S,(*)P^) . (132) 

mn     i   mn    c        nn    j   mn 

With (131), we are finally ready to attack the optimization problem. 

But, before we do this, we shall take care of the case for 6h - TT/2 

(half-wave dlpoles) which would make (109) - (111) indeterminate. 
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V.     HALF-WAVE DIPOLES 

It is obvious that, when Bh ■ n/2, we could not have proceeded from 

(85)  as we did In Section III.    We must start from the basic Integral 

equation (79).    When z Is set to equal h,   (83) becomes 

h 

(133) 
N 
I 

m-l 
I.Ci^KKh.t^d«' - -|ö Vn m m 

-h 

Subtracting (133) from (79), we get 

I I (z^K' (z.z^dz' - - Ar [Ccos ßz - ^ (sin B|z| - 1)], (134) 
m-l m   mn 

-h 

where K* (z.z') has been defined In (86). C can be found from (134) mn n 

by setting z - 0 In (79). 

N 
C - j30 I 
n       i m-l 

I (z')K (O.z'Jdz* m    mn 
-h 

Combining (134) and (135), we obtain 

(135) 

N ! 
I 

m-l [ -n 
m   mn 

where 

. J- 
60 (Vn(8ln B|z| - 1J + IT cos 82] , 

n"l,2,...,N 

U' n 

N 
J60 I 

m-l 
I (z^K (O.z^dz' m   mn 

-h 

(136) 

(137) 

Equations (136), Instead of (85), must now be solved. 
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Thr three-term expansion for current distribution in (88) -  (91) must 

also be modified.    We write 

I (z) -    I    Bfk) S'(2) (138) m ki1    m       k 

with 

S^(z) - sin 8|z|  - 1 (139) 

S^u) - cos Bz (140) 

S^(z) - cos y Bz - cos j (141) 

Following the same procedure outlined in Section III, we obtain,  instead 

of (112) - 114), 

ni"l 

I    B(1)  y'(2)
+    I    B(2)  v'<3). -±-U' (143) S    m     xinnR   +    L.    m      xinnR 60    n U^",; 

m"l m"l 
n^n 

In (143) 

.      m     Amnl m      AonI n     Anm ml 

f,s ( cos BR,       cos BR, 
CR   --    J    ^(z'H—-i--^-2]d^ CMS) 

-h 

h 

t'l*-        j    SiU')(-^^--^-^]d2' (1^6) 
-h 
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cos BR, 

Rl 

cos ßR0 
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-h Rl ^T"]d2 (147) 

v'a) -i rh 
X„_T    '- i     l     ...   .    "■>■» B*.^      sin gR 

«!    " R! ldz'        (148) -h 

h 
 sln 6R,      sin «p 

•2, 

"^ Rl Md R2 h——" ao4) ., ao5, ^ 

N h 

Un=J60    I       (    I(z, 
m=l    ■'       m      ^  nin^u'2 "'dz 

-h 

N 

(2, (2) f 

-ü    "       »»■-•-- a.'3) 

(3), h 

-h (154) 

In matrix form,   (142) - (UA)  .an w 
U^;  can be solved to give 
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where 

and 

[B(1)]  =   [Q(1)][V] (155) 

[B(2)]  =  [Q(2)][V] (156) 

[B(3)]  =  [Q(3)][V]   , (157) 

^--iö^nR^"1 (158) 

[Q(2)]  -  [^rW^n^] (159) 

[Q^J = . [x'i3)]-1[x^)][Q(1)] - [x'frV^HQ^] (160) mn               rnni                            ma               mn 

U(b)]  =  [X(3)(0)][x'(3)]-1[x'(2)] +  [x,(3)   - X(2)(0)] (161) 1  Q    J       lxnin  v  yjLXinn     J     LXmnI  J       lxinnR        xmn  ^  ^J v       ' 

u«), ..,(!- 6   ix^ - xi1'«)] - [x^'wjHx^r^x^") Q            mn mnR    mn        mn mn     rnni 

Combining (149) - (151) with (138), we have (162) 

[I] = [Y'][V] , (163) 

where 

y» (z) S;(Z)Q^) + si(z)Q^) + s:(z)(/3) (i6A) mn l        mn z        mn i        mn 

Equations  (163)  and (164)  for half-wave dipoles correspond to  (131)  and 

(132) respectively. 
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VI. MAXIMIZATION OF DIRECTIVITY 

The far-zone electric field of an array of N parallel, z-dlrected, 

center-fed dipoles is 

E(e,*) =^e-Jßr f eJßVÜ f In(z')eJ
3z,COS 9 sin G dz' ,  (165) 

n=l       ^ 

where B is the phase constant, r is the vector from the origin to the 

center of the nth dipole, and ü is the unit vector from the origin to the 

observation point. Equation (165) can be rearranged and written in a 

matrix notation. 

E(e,())) = 
-jßr 

tH]T[I] dz' , (166) 

-h 

where both [H] and [I] are Nxl column matrices. The typical elements of 

H    s-i^ sin 9e-jßVü (e-jgZ'coSe)   > 

[H]  is H : n 

4TT 
(167) 

Substituting (131)  in (166), we obtain 

where 

E(e,*) - 
-jßr 

-jßr 

.  h 

-h 

[H]r[Y]dz' [   [V] 

(M] [V] , 

IM] (H]T[Y] dz' 

-h 

(168) 

(169) 
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is a    1*N row matrix.    Of course,   (163), instead of  (131), would be used 

if $h = TT/2.    The only effect would be to change  [Y]  in  (169)  to  [Y']. 

Now, the array directivity is, from (65), 

r2|E(e ,♦ )|2 

D<V*o) -   60 P° (170) 

in 

where P.     is the time-average input power to the array. 

= ±Re  {[V]   [YJ^0-[V]} 

= J iV]+[YR][V], (171) 

The elements of [YD] are the real part of those of the driving point 

admittance matrix [Y] „. With (168) and (171), D(e ,4)o) in (170) becomes 

mVuMiV] 
0(0.6  ) f 2  

0    0        30  [V]t[YR]   [V] 

where   [M ]  is   [M]  In  (169)  evaluated for the direction  (6   ,<t> ).     Equation 

(172),  as   (7),  is a ratio of Hermitlan forms,  and Theorem 1 in Section 111, 

Part   (A),  can be used to find the maximum directivity    DM(9   >$ )>  and the 

required voltage excitations  [V].    We have 

D„ « -Sn  [M„] + [YD]"1[M_J (173) 

and 

M      30  l oJ   l  RJ     l  oJ 

lV]M "  lh]'llV   ' (17A) 
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The optimization problem is now completely solved.    The required 

matrix  [Y  ]  is obtained easily from the admittance matrix [Y]   (or  [Y'] 

if ßh = TI/2), whose  formulation has been developed in the previous sec- 

tions.    We note that   [Y   ]  is of a dimension N*N for an N-element array 

irrespective of the length of the dipoles. 
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VII.  NUMERICAL EXAMPLE 

The integral-equation approach formulated above for optimizing arrays 

with mutual coupling is applied to a four-element  circular array for which 

some Important results on directivity optimization have been obtained by 

using the method of moments.    Although this approach applies  to larger arrays, 

it was  thought advisable to check with some known results  first in view of the 

rather involved analytical process.    Once the formulation and the results have 

been verified for the four-element array,  the extension to larger arrays is 

straightforward and needs only slight  changes in the computer program. 

The array has  four parallel,  z-directed,  dipoles,  each of diameter 2a 

and length 2h,  uniformly spaced around a circle of diameter d.    The coordinate 

system is selected such that one dipole coincides with the z-axis,  a second 

one lying in the xz-plane,  and a third one lying in the yz-plane.    The follow- 

ing parameters are chosen: 

2a/A = 0.0025 

2h/A = 0.36     (h/a - 144) 

d/A « 0.61 . 

The directivity of this array in the principal H-plane  (0 = 90°)  is 

maximized for each value of Q by adjusting the amplitudes and the phases of 

the excitation voltages V , n-1,2,3,4.    The results are plotted as the curve 

in Fig.  8, which coincides almost exactly with that obtained by Cummins   [23], 
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who used the method of moments and the method of subsections described 

in Section VII, Part (A). The Fortran program used for computing the 

maximum directivity in Fig. 8 is appended to show its relative simplicity. 

In spite of the complexity of the formalism, the cost of computing the 

entire curve in Fig. 8 on an IBM 360/50 computer was only about five 

dollars. 
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VIII.  CONCLUSION 

The obvious advantage of the integral-equation approach in solving the 

directivity maximization problem for an array of dipole antennas, as compared 

to the method of moments using subsections, is the S-fold reduction in the 

order of the matrix to be inverted, where S is the number of subsections for 

each dipole. This results in a saving in computer time (cost) by a factor 

3 * 
of S , in addition to relaxing the requirements on memory capacity.  Besides 

the directivity, quantities such as the current distribution on each dipole, 

the self and mutual impedances, the radiation pattern, etc., can all be 

calculated without difficulty. 

For arrays with many elements (N very large), practical computing dif- 

ficulties will arise even if the antennas are not divided into subsections. 

In such cases, other techniques are needed to simplify the computing procedure. 

Because of the existence of rotational symmetry in a uniformly spaced circular 

array, it is possible to circumvent the necessity of inverting any matrix by the 

introduction of a rotational operator [17].  Hence, the number of elements in a 

uniform circular array, no matter how large, represents no real constraint on the 

feasibility of obtaining numerical solutions. On the other hand, linear arrays 

possess no circular symmetry; thus the technique of using a rotational operator 

does not apply and other methods must be sought when N is very large. Special 

methods for handling pattern synthesis and performance optimization of very large 

arrays constitute an important area for further research. 

For the particular example in Section VII, symmetry about the plane (xy-plane) 
bisecting the dipoles reduces the effective order of the matrix handled by the 
method of moments by a factor of 2. Symmetry property about the plane contain- 
ing the diametrically opposite elements simplifies the computation for both the 
moment method and the integral-equation method. 
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